

Neural Networks and Gas Turbine Diagnostics

- Work on ANN has been motivated by the recognition that the human brain computes entirely differently from computers
- □ A brain learns from experience

Artificial Neural Networks

Neural network: a massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing experimental knowledge and making it available for use.

Training of ANN:

A typical Neural Network

A neuron is an information-processing unit – fundamental to the operation of NN

THREE KEY ELEMENTS:

- \checkmark A set of synapses
- \checkmark An adder
- \checkmark An activation function

Signal-flow graph of a neuron

$$y_k = \varphi \left(\sum_{j=1}^m w_{kj} x_j + b_k \right)$$

Activation function to take into account non-linearity:

Threshold Function:

Piecewise-Linear Function:

Sigmoid function $\varphi(v) = \tanh(v) = \frac{1}{2}$

9

Samples: Examples of individual cases – experience:

Training Algorithm: Feed-Forward Back-Propagation (FFBP)

Rate of learning:

$$W_{ji}(n) = W_{ji}(n-1) + \Delta W_{ji}(n)$$

$$\Delta w_{ji}(n) = -\eta \frac{\partial E(n)}{\partial w_{ji}(n)} + \alpha \Delta w_{ji}(n-1)$$

where

$$E(n) = \frac{1}{2} \sum_{j=1}^{p} e_j^2(n) \qquad e_j(n) = d_j(n) - y_j(n)$$

 η -- learning rate parameter α -- constant A low η produces slow training process; A large η may introduce instability to the learning curve

Training Quality:

Cross-Validation:

NN Validation:

Successfully identified samples

Success Rate = -----

Total validation samples

Actual Faults ===→

Confusion matrix:

	Fault 1	Fault 2	Fault 3
Fault 1	100%	0	0
Fault 2	2%	98%	0
Fault 3	0	0	100%

Matlab Neural Network Toolbox

- Design and simulate Neural Networks

<u>Neural Network ToolboxTM</u> provides tools for designing, implementing, visualizing, and simulating neural networks.

Training of ANN:

Procedure of using a neural network:

- Choose a neural network configuration
- Generate samples (experiments or simulations)
- Split samples into training and testing/validation samples
- Training of neural network (training samples)
- Validation of neural network (validation samples)
- Application of neural network (re-call mode)

Two events (samples)

No.	(z , x)		
1	(1.0,	-1.0)	
2	(-2.5,	2.5)	

Simple Example

Assume all weights = 1 initially.

Simple Example

2nd epoch:

1st sample (1.0, -1.0)

Simple Example

3rd epoch:

1st sample (1.0, -1.0)

Two samples

No.	$(\Delta z, \Delta x)$		
1	(1.0,	-1.0)	
2	(-2.5,	2.5)	

Fault Detection

Fault Isolation

Fault Quantification

A Neural Network Based Diagnostic system :

Gas turbine diagnostic framework for a single spool industrial gas turbine

Features :

- Non-model based
- Very quick for application once trained suitable for online or real time applications
- Accuracy can be very high
- Long time for training
- Large number of training & validation samples required
- Can only be used in training domain
- If the physical system is modified, the NNs should be trained again